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Farside lunar gravity from a mass point model
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Abstract—A mass point representation of the lunar gravity field was determined from the long-periodic
orbital variations of the Apollo 15 and 16 subsatellites and Lunar Orbiter V. A radial acceleration
contour map, evaluated at 100 km altitude from the lunar surface, shows that the nearside is in close
agreement with the result derived from the line of sight method by Muller and Sjogren. The farside
map shows the highland regions as broad positive gravity anomaly areas and the basins such as
Korolev, Hertzsprung, Moscoviense, Mendeleev, and Tsiolkovsky as localized, negative gravity
anomaly regions. The farside map has a first-order agreement with the result derived from the
harmonic field method by Ferrari. The mass points analysis indicates that the nearside is almost all
negative gravity anomaly regions except for the known positive mass anomaly basins (mascons) and
the farside is almost all positive gravity anomaly regions except for some localized negative areas near
the basins.

THE AroLLO PROGRAM provided a vast amount of various types of lunar data.
These data have led to models for the composition and structure of the interior of
the moon, however information on the farside lunar gravity has never been
incorporated. Several lunar gravity fields represented by spherical harmonic
coefficients have been published (Lorell, 1970; Liu and Laing, 1971; Michael and
Blackshear, 1972). Farside acceleration contours from these fields give unrealistic
values and show no correlation between topography and gravity. The similarity
between the various fields is minimal.

Since the discovery of “‘mascons’ on the moon by Muller and Sjogren (1968),
there has been much interest in modeling the gravity field by point masses or
disks or lenses, instead of the conventional harmonic coefficient representation.
The gravity map of the lunar nearside has been well determined by discrete mass
point representations (Sjogren et al., 1971; Wong et al., 1971). The mass point
representation has also been applied to the determination of the gravity field of
Mars (Sjogren et al., 1975), by processing the Mariner Mars 1971 orbiter tracking
data. A long-periodic mass point modeling approach has been- utilized in this
analysis in processing the Apollo 15 and 16 subsatellites and Lunar Orbiter V data to
determine the farside and nearside gravity field.

Apollo 15 and 16 subsatellites tracking data are completely thrust free and thus
a large contiguous block of data was used in this analysis. About two years of
tracking data for Apollo 15 subsatellite and 32 days of tracking data for Apollo 16
subsatellite are available for gravity field determination. Since both subsatellites
are in low inclination orbits (Apollo 15 subsatellite, i = 30°, Apollo 16 subsatellite,
i =10°, a small segment of about 7 days of attitude-control-thrust-free Lunar
Orbiter V (i = 85°) tracking data was also included in the data set. The addition of
high inclination data has helped to separate the correlations between the mass
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Table 1. Orbit data description. -

No. of Data weights used
data*
Satellite Period Eccentricity Inclination points o.t ot oot oot
Apollo 15 2hr 0.02 151° 238 0.25x10™° 0.23x107®% 0.27x107% 0.22x1077
Apollo 16 2 hr 0.02 170° 129 025x10° 0.23x107® 027x10% 0.22x1077
Lunar- ’
Orbiter V. 3 hr 0.28 85° 28 0.1x10°  028x107® 0.17x10™° 0.41x107°
*4 data points/day are used.
t(/sec).
f(rad/sec).

points. The inclusion of Lunar Orbiter IV data would have helped to get some
separation by difference in altitude, but the Lunar Orbiter IV data which were
processed seem to contain non-gravitational perturbations and thus this data was
not used in this analysis. Table 1 contains pertinent information about these
satellites. '

The method of data reduction employed in this analysis is based on processing
the long-periodic variations in the mean Keplerian orbital elements of the
satellites. This approach is quite different from the method of directly fitting the
doppler data. A similar approach has been used by Ferrari (1975), however his
gravity field was represented by harmonic coefficients, rather than a grid of mass
points.

The data reduction process was a two-stage approach. In the first stage, the
raw doppler tracking data were reduced to obtain mean orbital elements (aq, e, I, w,
Q) for each orbit. A low order lunar gravity model* and the perturbations due to
earth, sun, and solar radiation pressure were used in processing the raw doppler
tracking data. The mean elements were spline fit and the time derivatives were
generated. Analysis indicated that the smoothing process by spline fitting has not
introduced any substantial errors and these seem to be well within the noise level
of the mean elements. In the second stage the gravity parameters (point masses)
were determined by fitting the time derivatives of the mean orbital elements (¢, I,
o, Q). As there is no long-periodic variation in semi-major axis (a) due to gravity
perturbation, the mean element a was not used in the data reduction. The
variation in mean a is less than 300 m. The data were corrected for all non-lunar
gravity perturbations, such as earth, sun, and solar radiation pressure effects
(Lorell and Liu, 1971; Kozai, 1961). The data were also adjusted for the second
harmonic of the gravity field (J, =.204 X 107%).

To demonstrate that the farside gravity anomalies can be recovered from the
nearside doppler data a simulation study was performed. In the simulation study,
surface mass disks were placed both on the nearside and farside of the moon and
trajectories were integrated from a given set of initial conditions. Simulated

*The harmonic coefficients of the reference model are J,=.207108 X 103, C,, =.207 X 107,
I3 =-21X 10_4, C31 = 35X 10_4, C33 =258 X 10_5.
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doppler tracking data were computed, along the direction of observation from the
earth, throughout the orbit as if one could see through the moon. A set of mean
orbital elements were computed by fitting the doppler data all around the orbit (the
orbital period is approximately 120 min). Similarly various sets of mean orbital
elements were computed by fitting doppler data along partial orbits (50, 60, and
69.5 min of data). The partial fit mean elements compared well to those from the
mean elements generated by fitting the complete orbit. The mean elements
generated by fitting data from the nearside partial orbits were compared against
the mean elements generated by fitting data from the farside partial orbits. The
mean elements were not sensitive to the fact that the data was taken from the
nearside partial orbits or the farside partial orbits.

Figure 1 shows the variation of eccentricity as a function of the number of
orbits. This variation is computed by numerically differencing the mean eccen-
tricities of the adjacent orbits. The continuous curve corresponds to the variation
in eccentricity obtained by fitting the complete orbit (120 min). The triangles,
circles, and squares correspond to variations in eccentricities obtained by fitting
the partial orbits of 69.5, 60, and 50 min, respectively. It is seen here that the
difference between the variations in eccentricity generated by fitting the complete
data and the partial data of 69.5 or 60 min is negligible. However, the variations in
eccentricity obtained by fitting 50 min of data are much different. Thus it is shown
that the variations in mean elements of the orbit can be determined by fitting the
data along half or more of the orbit.* This simulation study thus indicated that the

*The simulation study was performed with the help of W. L. Sjogren. I am also indebted to John
Smith for his programming support for this simulation study.
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Fig. 1. Variations in eccentricity as determined by partial tracking coverage.
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long-periodic variations in mean elements generated by fitting the nearside data
alone could yield gravity anomaly parameters of the farside.

A discrete point mass model was employed in this analysis to determine the
farside and nearside lunar gravity field by reducing Apollo 15 and 16 subsatellites
data and Lunar Orbiter V data. The mathematical model in processing the data
was developed by averaging the partial derivatives of the disturbing potential due
to a point mass with respect to the orbital elements, and substituting these partials
into the variations of parameters equations (Ananda, 1975). In processing the data,
the mass points were distributed such that the locations were a priori fixed. Only
the mass values were estimated. As the Apollo 15 and Apollo 16 subsatellites data
dominated over the Lunar Orbiter V data, the major data sensitivity was in the
region of +30° about the equator. Thus, the mass points were distributed such that
each mass point was placed about 12-18° (450 km) apart over the region of +=30°
about the equator and 50 km below the lunar surface.

In order to select the depth at which to place the mass point, a simulation
analysis was performed. A single mass point was placed at various depths (25, 50,
100, and 150 km) and the variations in the rate of mean eccentricity was computed
over several days. A trajectory similar to Apollo 15 subsatellite was assumed for
the study. The signature of the eccentricity rate over the time period was sensitive
to the depth at which the mass point was placed. Figure 2 shows a typical case. A
similar analysis was done by placing a 170-km radius disk at the lunar surface.
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Fig. 2. Eccentricity variations as mass depths.
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This disk represented the Humorum Basin which is about 170 km in radius. The
analysis indicated that the signature generated by the disk placed on the lunar
surface and the signature generated by the point mass placed 50 km below the
lunar surface were close in amplitude and frequency. For example, the rms error in
é fit is less than .1 X 107%. Thus as an average all of the mass points in this analysis
were placed 50 km below the mean lunar surface.

The mass points were distributed such that the correlations between them
were minimized. This was achieved by analyzing the ground track of Apollo 15
and 16 subsatellites and care was taken not to place two or more mass points on
one orbital path. Thus the mass points were not uniformly distributed. Moreover,
after performing data reduction with a certain number of mass points, some were
removed from the original set to eliminate high pair correlations (correlation
coefficients of more than 0.6) which produced unrealistic results.

In a multiparameters system even relatively low pairwise correlations may be
symptomatic of higher order linear combinations among the parameters. In this
analysis, the correlation coefficients of 0.6 and more were observed to lead to
results which were unacceptable. Singular value analysis was performed on this
solution to study the singular value spread and results showed that the ratio
between the largest and the smallest components was 10°.* Thus the full rank or
standard least-squares solution was numerically acceptable and there was no need
to consider less than full rank solutions. (In fact singular value analysis on the
original model gave condition numbers of 10" which demonstrated numerical
instability.)

In analyzing 60 days of Apollo subsatellite data, about 32 days of Apollo 16
subsatellite data and about 7 days of Lunar Orbiter V data, estimates of 117 mass
points were obtained. There were four data points in each day totaling 395 data
points (1580 Keplerian rates) altogether. The data sets were kept separate and the
combinations were processed with different weighting factors and the data
weights are given in Table 1. A weighted least-squares filtering algorithm was
employed in reducing the data. A square-root form of the filtering equations was
used in the data processing scheme to enhance the numerical stability of the
solution (Bierman, 1973). About 90% of the information has been extracted from
the data and the residuals show systematic signatures indicating the effect of
unmodeled gravity parameters. The mass estimates of the 117 mass points and
their locations (latitude and longitude) and the standard deviation in the estimates
are given in Table 2. The point masses have been transformed into harmonic
coefficients and the low order and degree coefficients agree to first order with the
coefficients published by Sjorgen (1971). However, the first degree and order
terms (C1; and S1;) are not identically zero, indicating that the center of mass of
the system has been displaced about 200 m off the center of the coordinate
system. The solution obtained here did not make use of the constraints that the

*The exponent is inversely related to the number of digits accuracy one can expect (i.e.
N —exponent ~ the number digits of accuracy, where N is the number of digits in the mantissa of the
computer generated numbers).
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Table 2. Mass point location value and standard deviation.

Mass Mass value Std. dev.
point Longitude Latitude parts/total parts/total

number (deg.) (deg.) mass* mass
1 —180 26 .0186 0011
2 —160 26 .0291 .0010
3 —-140 26 —.0042 .0010
4 -120 26 .0035 .0010
5 —-100 26 —.0284 .0009
6 —80 26 .0029 .0009
7 —60 26 .0349 .0008
8 —-40 .26 —.0436 .0008
9 -20 26 .0033 .0007
10 00 26 -.0122 .0007
11 20 26 .0661 .0006
12 60 26 -.0176 0007
13 80 26 0071 0010
14 100 26 —.0820 .0008
15 120 26 .0345 .0009
16 140 26 .0533 .0009
17 160 26 -.0372 .0010
18 —-170 14 .0598 .0006
19 -150 14 .0005 .0006
20 —130 14 .0453 .0006
21 -110 14 —.0047 .0006
22 -90 14 -.0204 .0006
23 -175 14 .0397 .0007
24 -6Q 14 —.0285 .0005
25 —45 14 -.0199. .0005
26 -10 14 —.0009 .0005
27 10 14 —.0195 .0004
28 30 14 —.0149 .0005
29 45 14 —.0402 .0006
30 75 14 0169 .0006
31 20 14 —.0509 .0006
32 110 14 —.0285 .0005
33 130 14 .0264 .0005
34 150 14 .0294 .0007
35 170 14 —.0445 .0007
36 -177 3 .0126 .0004
37 -165 3 .0346 .0003
38 —145 3 .0329 .0003
39 -130 3 —-.0220 .0004
40 -110 3 .0059 .0003
41 -9%0 3 .0292 10004
42 =75 3 —.0216 .0003
43 -55 3 —-.0108 .0003
44 -35 3 —.0268 .0003
45 -20 3 0121 .0002
46 00 3 .0001 .0002
47 20 3 .0157 .0002
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Table 2. (Continued).

Mass Mass value Std. dev.
point Longitude Latitude parts/total parts/total
number (deg.) (deg.) mass* mass
48 40 3 —.0362 .0002
49 60 3 —-.0194 .0002
50 80 3 —.0395 .0003
51 95 3 —.0359 .0003
52 115 3 .0016 .0003
53 135 3 —.0146 .0004
54 150 3 .0140 .0004
55 170 3 —.0068 .0004
56 —168 -7 0424 .0004
57 —150 -7 .0401 .0004
58 —-132 =7 .0109 .0004
59 -114 -7 .0072 .0004
60 - 96 -7 0371 .0004
61 —78 -7 —.0138 .0004
62 -60 -7 —.0095 .0003
63 —42 -7 —.0168 .0003
64 —-24 -7 —.0204 .0004
65 -6 -7 —.0070 .0003
66 12 -7 —.0383 .0003
67 30 ~7 .0031 .0003
68 48 -7 -.0155 0003
69 66 -7 —.0257 .0003
70 102 -7 .0123 .0004
71 120 -7 0212 .0004
72 138 -7 .0506 .0003
73 156 =7 0267 .0003
74 174 -7 .0546 .0004
75 —180 -17 —.0083 .0005
76 -162 -17 .0209 .0005
77 —144 -17 -.0015 .0005
78 —126 -17 .0041 0006
79 -108 -17 —.0086 .0006
80 -90 -17 —.0271 .0006
81 =72 -17 -.0177 .0005
82 ~54 -17 .0033 .0004
83 -36 -17 .0045 .0004
84 -18 -17 —.0104 .0005
85 00 —-17 10091 .0004
86 18 -17 —.0128 .0005
87 36 -17 .0348 .0004
88 54 -17 —.0362 .0005
89 .72 -17 —.0076 .0005
90 90 -17 —.0106 .0005
91 108 -17 —-.0097 .0005
92 126 -17 —.0333 .0005
93 144 -17 —-.0037 .0006
94 162 -17 _ .0367 .0005
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Table2. (Continued).

Mass Longitude Latitude Mass value Std. dev.
point (deg.) (deg.) parts/total parts/total
number mass* mass
95 —168 -26 .0099 .0008
96 —-150 -26 —.0037 .0008
97 —-132 -26 —.0077 .0008
98 —114 -26 —.0164 .0008
99 -96 -26 .0393 .0007
100 -78 -26 —.0343 .0006
101 -6 —26 -.0119 .0005
102 12 —26 .0142 .0006
103 30 -26 —-.0123 .0005
104 48 -26 -.0212 .0006
105 66 -26 .0241 .0007
106 84 —26 —.0355 0007
107 102 -26 .0248 .0008
108 120 -26 —-.0357 .0008
109 138 -26 —.0073 .0008
110 156 -26 .0559 .0007
111 174 -26 -.0117 .0007
112 -19 37 .0241 .0008
113 59 17 0467 .0005
114 -39 —24 .0034 .0004
115 -8 10 .0241 .0003
116 84 -3 .0146 .0003
117 -95 -20 .0363 .0007

*GM value = 4902.78 km®/sec’.

total sum of the point masses is zero and the center of mass and center of the
coordinate system coincide.

A radial acceleration map, evaluated at 100-km altitude from the lunar surface,
has been generated for the 117 mass points. Different sets of mass point solutions
(115, 119, and 121 point masses) have also been obtained and the radial
acceleration maps generated. The general shape of the contours remain about the
same in all the maps, thus giving confidence in the solutions. Figure 3 shows the
nearside radial acceleration contours for the 117 mass point solution, and Fig. 4
shows the farside radial acceleration contours relative to a J, acceleration surface.
The nearside is in close agreement with the result derived from the line-of-sight
method (Muller and Sjogren, 1968). The 117 mass point model resolves all the
previously known mascons (Mare Imbrium, Mare Serenitatis, Mare Crisium, Mare
Nectaris, Mare Humorum, Mare Smythii, and Sinus Aestuum) as positive gravity
anomaly regions. The central highland regions are resolved as positive gravity
anomaly regions. The areas near Oceanus Procellarum, Mare Tranquilitatis, and
Mare Fecunditatis are all resolved as negative gravity anomaly regions. Mare
Orientale is resolved as a strong positive anomaly. Though the basin Mare Imbrium

© Lunar and Planetary Institute * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1975LPSC....6.2785A

599 "30n114¥T
£

RSN ot
A - o, % Moo

W
B

1.\G8/¢ 9. DSd19/6T.

-ou}INS 9A0QE WY 001 I€ S[ESI[IW (SpIs1eau) poy Ayaeis reun ¢ ‘31q

fop 'IGNLISNOTY

¥ P oac
PB4 o
A X
&M“
i

306 ETA 309

“J0011YY

bap

2793

© Lunar and Planetary Institute * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1975LPSC....6.2785A

1.\G8/¢ 9. DSd19/6T.

"9deLINs dA0qe Wy (0] e s[edijjiw (apisiey) pjoy Ayaeis reun ‘p Sy

Bop ‘3anLioNOT

BB “JaN0IIVT

2794

© Lunar and Planetary Institute * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1975LPSC....6.2785A

Farside lunar gravity from a mass point model 2795

is resolved to be a positive gravity anomaly region the magnitude (+ 80 milligals) is
not as large as the one obtained by the line of sight method (over 200 milligals).
This is because the anomaly is at about +37° latitude and the Apollo 15 and 16
subsatellite data coverage is only up to +30° in latitude. In general, the nearside
seems to be all negative gravity anomaly regions except for the known positive
mass anomaly basins. Note, however the effect of J, has been removed and its
addition would be approximately 50 milligals at the equator.

The lunar farside gravity map shows the highland regions as broad positive
gravity anomaly areas and the basins such as Korolev, Hertzsprung, Mos-
coviense, Mendeleev, and Tsiolkovsky as localized negative gravity anomaly
regions. In general the farside is almost all positive gravity anomaly regions
except for some localized negative areas near the basins. The basin Korolev
seems to lie between two gravity high regions whereas the basin Hertzsprung
resolves as a localized negative gravity anomaly area. There exists a large basin
starting 25°S in latitude around 180° longitude and the gravity anomaly seems to
change from positive to negative in that area. As the data coverage does not go
below 30°S the gravity parameters below 30°S latitude were not resolved.

The farside basins do not exhibit positive gravity anomalies as in the cases of
nearside basins. Thus no new “mascons” were discovered on the farside. The
farside basins are not maria filled whereas the nearside basins are maria filled.
Thus maria fillings seem to be highly correlated with basins having gravity highs.
The farside regions exhibit correlation with topography generated from the Apollo
laser altimetry (Sjogren and Wollenhaupt, 1973). The farside basins are resolved as
localized negative anomalies whereas the highland regions are resolved as broad
positive gravity anomaly regions.

The farside gravity map has a first order agreement with the results derived from
the spherical harmonic coefficients method (Ferrari, 1975). Further studies will
continue by combining low degree harmonic coefficients and discrete mass points
to model the lunar gravity field. In addition, solutions will be derived which
constrain the center of mass and the total mass of the point mass model.
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